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Abstract. Numerical methods using homoclinic orbits are applied to study the existence and stability of spa-
tially localized and time-periodic oscillations of 1-dimensional (1D) nonlinear lattices, with linear interaction 
between nearest neighbors and a quartic on – site potential  
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where the ( + ) sign corresponds to “hard spring” and ( - ) to “soft spring” models. These localized oscillations 
- when they are stable under small perturbations - are very important for physical systems, since they seriously 
affect the energy transport properties of the lattice. We use Floquet theory to analyze their linear (local) stabil-
ity, along certain curves in parameter space (α, ω), where α is the coupling constant and ω the frequency of the 
breather. We then apply the Smaller Alignment Index method (SALI) to investigate more globally their stability 
properties in phase space. Comparing our results for the ± cases of V(u), we find that the regions of existence 
and stability for simple breathers of the “hard spring” lattice are considerably larger than those of the “soft 
spring” system. The variation of the size of the regular region around a stable breather is investigated as the 
number of particles is increased. 
 
 
1 INTRODUCTION 

We consider a one – dimensional (1D) lattice described by the equations of motion:   
 

1 1( ) ( 2 )  ,   ,n n n n nu V u a u u u n
+ −

′+ = + − − ∞ < < +∞     (1) 
 

where ( )u tn is the displacement of the particle at nth lattice site, a  the coupling parameter and  ( )V u and on - 
site potential given by the form:  

 
2 41 1

( )   ,
2 2

V u Ku u= ±      (2) 

 
where K > 0 is a fixed parameter. Dots indicate time derivatives, and primes differentiation with respect to the 
argument. These equations describe the dynamics of an infinitely long chain of oscillators, each linearly coupled 
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to its nearest neighbors and experiencing a “substrate” potential V. The (+) sign in Eq. (2) implies that the parti-
cles are tied to the substrate by “hard spring” forces, while the (–) sign refers to the “soft spring” case. Since the 
seminal paper of MacKay and Aubry in 1994 [1], in which the existence of localized, time periodic solutions 
(the so – called discrete breathers) of systems like (1) was rigorously established, there has been a wealth of 
results in the physics and mathematics literature, concerning the properties of these solutions (see e.g. [2-5]). 
There exist several methods to compute numerically exact breather solutions for system (1) with on site poten-
tial (2). With the term “numerically exact” breather, we mean a solution, which is time-periodic and spatially 
localized for a lattice of N particles and retains its shape as N is arbitrarily increased. For example, one can use 
the method of continuation starting from the limit 0α = , as explained e.g. in [1] and [4].  

On the other hand, it is also possible to apply relaxation methods based on the fact that, if a breather solution 
exists and is stable, it should attract a region of phase space around it, assuming that some dissipative process is 
present to eliminate any excess energy [6-8]. In the present paper, we prefer to use the more recently developed 
method of homoclinic orbits of invertible maps, as described in [9] and implemented in [10-11], which turns 
out to be very convenient, as it can be applied independently of the value of the coupling parameter a . This 
method operates in Fourier space and offers excellent approximations for breathers, which can be made “nu-
merically exact” by using the convergence of Newton schemes to construct them to arbitrary accuracy. Further-
more, it provides a systematic way by which all types of breathers possessing an arbitrary number of “local ex-
trema” (the so-called multibreathers) can be constructed. Finally our analytical predictions are fully confirmed 
by numerical simulations, which are presented in this paper and in detail in [12]. 

2 THE METHOD OF HOMOCLINIC ORBITS  

Since a discrete breather solution of Eq.(1) is time-periodic with, say, period T  and frequency 2 / Tω π= , it 
can be expanded in Fourier series  

 

( ) ( ) exp( )  ,n n
k

u t A k ik tω
∞

=−∞

= ∑      (3) 

 
with  coefficients 

 
*( ) ( ).n nA k A k= −       (4) 

 
Since the oscillations are expected to have zero mean, by virtue of the form of the potential (2), we set Αn(0)=0. 
Furthermore, all particles oscillate in phase, hence we may search for solutions with initial velocities zero, thus 
taking all the Αn(k) to be real numbers. Finally, due to the symmetry of the on site potential (2), only the modes 
with odd index k , i.e. 1, 3, 5...k = , are non-zero. The existence of such periodic solutions for “hard spring” 
systems (with + in (2)) has already been extensively demonstrated in the recent literature [9-11]. In this paper, 
we shall concentrate on the “soft spring” potential

   
2 41 1

( )  .
2 2

V u Ku u= −      (5) 

 
Inserting Eq. (3) in the equations of motion (1) and equating coefficients of exp( )ik tω  for every k , we obtain 
the following algebraic system for the ( )nA k :  

 

1 2 3

1 1 1 2 3

1
( ) ( ) ( ) ( ) ( ) ( ) ( )  ,n n n n n n

k k k

A k A k C k A k A k A k A k
α+ −

+ = − ∑∑∑   (6) 

 
where 1 2 3k k k k+ + = and 
 

2 2

( ) 2 .
K k

C k
ω

α

−
= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (7) 

 
The recurrence relation (6) is an infinite-dimensional mapping of the Fourier coefficients ( )nA k  with lattice 
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site index n as iteration parameter. Spatial localization requires that the Fourier amplitudes in the recurrence rela-
tion (6) satisfy ( ) 0nA k →  as n → ∞ . Hence a discrete (multi-) breather is a homoclinic orbit in the space of 
Fourier coefficients, i.e. a doubly infinite sequence of points beginning at 0 for n → − ∞ and ending at 0 for 
n → ∞ . Of course, in any numerical method the index space ( , )n k  has to be restricted to a finite subspace. 

Following the above arguments, if the Fourier series of Eq.(4) converges, the ( )nA k  diminish rapidly with in-

creasing k , hence it is sufficient to consider only a small number of harmonics of Fourier series in Eq.(4), say 
M, for all n lattice sites ( n−∞ < < +∞ ), i.e. 1, 2, ...,k M= . Under these conditions, Eq.(6) represents a 2M-
dimensional map and spatially localized time-periodic solutions may be expected to exist in the neighborhood of 
the trivial solution (An(k) = 0, for all n, k), provided this solution is hyperbolic, i.e. represents a saddle point of 
the map. The requirement that the fixed point of the 2M-dimensional map is hyperbolic (saddle point), with an 
M-dimensional stable and an Μ-dimensional unstable manifold, is filled if we require:   

 
2 2 2 2 or  4k K k Kω ω α< > +      (8) 

 
where ω  is the if the fundamental frequency ω  , obtained from Eq.(7), with k=1: 

 
( (1) 2)K Cω α= − −       (9) 

 
Thus, breathers exist if the fundamental frequency ω  and all its harmonics have values outside the range (K, 

K+4α ) specified by (8). This range, in fact, represents the spectrum of linear modes of the particles (the so – 
called “phonons”) and is often called the propagation zone, since it is within this range of frequencies that 
small disturbances can propagate along the lattice. Ιf ωk were to lie in this range for some k, this would imply 
the reduction of dimensions of the unstable manifold. Thus, the origin could not be a saddle fixed point of map 
(6) and homoclinic points (and breather solutions) would not exist with equivalent properties as n → ±∞ . 

Let us consider now the simplest possible approximation, for which the Fourier series (3) is represented by a 
single mode only, i.e. 

 
( 0) ( ) 2 (1) cos  , .n nu t A t nω= − ∞ < < +∞     (10) 

 
Substituting Eq. (10) into Eq. (1), using Eq. (2), and scaling also the Fourier coefficients by 

 
(1)    ,n nA Aα=      (11) 

 
we obtain finally 

 
3

1 1 (1) 3   ,n n n nA A C A A
+ −

+ + = −      (12) 
 

where 
 

2

(1) 2 .
K

C
ω

α

−
= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (13) 

 
Thus, instead of studying the 2M-D map (6), we solve the 2-D map (12) to obtain “zeroth” order approxima-

tions (10) of the breather solutions of the 1-D lattice (1) with the quartic on site potential (2). Clearly, the fixed 
point (0,0) of the 2-D map (12) will be hyperbolic, with a 1-D stable and a 1-D unstable manifold, if C(1) > 2 or 
C(1) < -2. For the case of “soft spring” we only treat here the case C(1)> 2, because for C(1)< - 2 the invariant 
manifolds of the saddle point at (0,0) do not intersect and breathers are not expected to exist. Using (15), the 
inequality C(1) > 2  means that the value of the frequency ω  is below the phonon band (propagation zone), i.e 

2 Kω < .  
Thus, to have breather solutions, one must appropriately restrict the system’s parameters so that the frequen-

cies of all harmonics, kω, lie outside the phonon band (K, K+4α). By comparison, the values of the frequencies 
(fundamental and harmonics) of the “hard spring” system are all above the phonon band, once 2 4Kω α> +  is 
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satisfied. Consequently, the parameter range for the existence of breathers of the “hard spring” lattice is much 
larger than the corresponding one for the “soft spring” potential (5).  
 
An orbit is also referred to as a solution of the map, since it solves the system of equations (12). Orbits consid-
ered in this paper are orbits connecting the saddle point (0,0) of our map to itself and are called homoclinic or-
bits. A homoclinic orbit consists by definition of states nx , which lie at the intersection of unstable manifold and 
stable manifold of the saddle fixed point. If there is one state for which this holds, there exist infinitely many of 
them, thus giving rise to an infinity of homoclinic orbits. The emerging picture is that of a homoclinic tangle. 
An example of such a structure is shown in Fig.1, where we plot in the 1 ,n nA A

+
 plane the stable and unstable 

manifolds of the saddle point at (0,0) of two-dimensional map Eq.(12) with C(1)=3.  

2 LOCAL AND GLOBAL STABILITY OF DISCRETE BREATHERS  

The time-periodic solution { }( )nu t  of eq.(1) with per site potential Eq.(2) is called linearly stable when all 
the eigenvalues of Floquet matrix lie on the unit circle. When some eigenvalue pairs “split off” the unit circle 
then the corresponding perturbations grow exponentially in time and the breather is called linearly unstable. 
(For a discussion of all these concepts concerning the linear stability of discrete breathers see [5].  
 

 

Figure 1. Part of the homoclinic tangle around the origin of the map of Eq. (12) at C(1) = 3. The stable and mani-
folds are the curves emerging out of the (0,0) saddle point. Some points of two homoclinic orbits at their inter-

sections (corresponding to two different breather solutions), are shown by dark and gray dots respectively. They 
provide very accurate estimates for the oscillation amplitudes An of the particles of the lattice, n ∈Z . 

 
Using the method of homoclinic orbits described above, we have constructed a large number of breather solu-
tions of Eq.(1) with the potential (5) and studied  their linear stability characteristics. We thus obtained the fol-
lowing results: 

• In most cases, as the coupling parameter α increases, breather solutions for ‘soft spring’ systems undergo 
a complex instability transition, i.e. a complex conjugate pair of their eigenvalues achieves magnitudes 
larger than one by splitting off the unit circle in two complex conjugate pairs (see Fig.3(c)). It is impor-
tant to note that unlike other bifurcation types (like pitchfork, period – doubling etc.), this instability 
transition represents the termination of a family of periodic solutions, as it is not associated with the si-
multaneous appearance of other (stable) periodic solutions [19, 20].  

• Unlike the hard spring case, when we follow curves in the parametric space (α,Κ,ω), described by the 
function:  
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2

( , , ) 2 =const.  ,
K

G a K
a

ω
ω

−
= − +

⎛ ⎞
⎜ ⎟
⎝ ⎠

    (14) 

 
breather solutions for “soft spring” systems do not preserve the number of eigenvalues  of the Floquet 
matrix with absolute values different  from one.  In Fig.2 we depict the distribution of eigenvalues of 
the monodromy matrix for a “soft spring” breather solution for various values of coupling parameter a , 
keeping constant the values for (1)C  for K (see Eq. (13)). 

By comparison, the breather solutions of systems (1) with quartic “hard spring” potential do not appear to 
exhibit complex instability transitions, as they are always found to become unstable by pairs of eigenvalues split-
ting off the unit circle at +1 on the real axis. Furthermore, they do possess curves in parameter space (α, Κ, ω), 
described approximately by Eq.(14), along which breather solutions do not change their stability preserving the 
number of eigenvalues of monodromy matrix with absolute values different  from one . 
 

 

Figure 2. For the “soft spring” breather shown in (a), with 21 particles and C(1)=8, K=2, we display in the com-
plex plane how the distribution of the eigenvalues of the monodromy matrix changes as the coupling parameter α 

is increased: (b) α=0.015, (c) α=0.05 and (d) α=0.1. Note the occurrence of complex instability at 0.05α ≥ . 

 
A more “global” investigation of the stability of discrete breathers can be performed using the method of the 

Smaller Alignment Index (SALI) to discriminate between ordered and chaotic motion in a very efficient way. 
This method was introduced in [13], where it was applied successfully in 2D, 4D and 6D symplectic maps. More 
importantly, however, it distinguishes order from chaos also in Hamiltonian systems, as shown in [14-17], where 
it was applied to systems with 2 and 3 degrees of freedom. The main advantage of the SALI is that it has com-
pletely different behavior for ordered and chaotic orbits, which allow us to decide the nature of the orbit faster 
than other traditional methods, like e.g. the computation of Lyapunov characteristic exponents. In particular the 
SALI fluctuates around non-zero values for ordered motion, while it goes abruptly to zero for chaotic orbits. In 
the latter case, the SALI can also reach the limit of the accuracy of the computer (10-16), which means that the 
chaotic nature of the orbit is established beyond any doubt and no further computations are needed. In order to 
compute the SALI we follow simultaneously the evolution of orbit and two initially different deviation vectors 
v1(0), v2(0). In every iteration N* the deviation vectors are normalized keeping their norm equal to 1, while the 
norm of their sum (antiparallel alignment index, ALI+) and their difference (parallel alignment index, ALI-) are 
also computed. Then the SALI is defined as the minimum of these two quantities: 
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1 2 1 2

1 2 1 2

* * * *
*

* * * *

v (N ) v (N ) v (N ) v (N )
SALI(N )  min    ,     ,

v (N ) v (N ) v (N ) v (N )
= + −

⎧ ⎫
⎨ ⎬
⎩ ⎭

   (15) 

 
with || . || denoting the euclidean norm. 

In the case of chaotic orbits the two deviation vectors will eventually be aligned with the most unstable direc-
tion [13], becoming equal (ALI-=0) or opposite (ALI+=0), which means that the SALI becomes zero. In the case 
of ordered orbits on the other hand, the motion is quasiperiodic and takes place on a torus, as if the system were 
integrable. Thus, any pair of arbitrary deviation vectors tend to the tangent space of the torus and since there is 
no reason why they should become aligned, in general, they oscillate about two different directions and the 
SALI fluctuates around some non-zero value. In [17] the behavior of the SALI for ordered orbits was studied 
and explained in detail in the case of a completely integrable 2D Hamiltonian system. In the present paper we 
have applied the SALI method to find out how persistent is the ordered behavior around stable breathers in the 
hard and soft spring potentials.  

Of course, since the numerically exact breathers correspond to periodic orbits in a multidimensional phase 
space, they can be perturbed by changing a number of different variables. In order to get a rough idea of the 
‘size’ of the phase space region of ordered behavior around the stable breather we have chosen to perturb only 
the initial position of the central particle u0.  

So, starting from the stable periodic orbit and changing u0 we compute for a sample of orbits the SALI using 
as initial deviation vectors v1(0) = (1,0,…..0), v2(0)= (0,1,0,…,0). The SALI of ordered orbits remains always 
different from zero exhibiting some small fluctuations. This behavior is shown in the log-log plots of Fig. 3 for 
the soft spring potential and Fig. 4 for the hard spring case, where the SALI of a stable periodic orbit is plotted as 
function of the number of iterations N* (curves (a) in both figures).  

In the soft spring case, the first chaotic orbit was found for a perturbation ∆u0=0.2207 and the evolution of 
the corresponding SALI is plotted in Fig. 3 as curve (b). We see that after an initial transient time interval the 
SALI decreases abruptly reaching very small values, 10-10 after N* ≈ 1500   iterations, which is the typical be-
havior of the SALI for chaotic motion. On the other hand, in the hard spring case it is much harder to destabi-
lize the stable periodic orbit as we need a considerably higher perturbation ∆u0 to have chaotic motion. In par-
ticular we have to perturb the position of the central particle by ∆u0=1.3 to get a chaotic orbit, the SALI of which 
is plotted in Fig 4 as curve (b). Again we have an abrupt fall of the SALI to very small values reaching  10-10 
after N* = 9500 iterations. 
 

 

Figure 3.  The log-log evolution of SALI with respect to the number N* of iterations for the stable breather solu-
tion with soft spring potential containing 21 particles at C(1)=8, α=0.15275, K=2 (curve (a)) and for the same 

orbit with a perturbation ∆u0=0.2207 in the initial position of the central particle (curve (b)). 
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Figure 4. The log-log evolution of the SALI with respect to the number N* of iterations for a stable breather with 
hard spring potential containing 21 particles at C(1)=8, α=0.15275, K=2 (curve (a)) and for the orbit with a per-

turbation ∆u0=1.3 in the initial position of the central particle (curve (b)). 

 
6   CONCLUSIONS 
 
Our main results can thus be summarized as follows:  In a one dimensional lattice with on site potential describ-
ing a “hard spring” and a “soft spring system”, varying the lattice coupling parameter α > 0, we have studied 
bifurcations of localized periodic solutions (called “breathers”) and have found that the “hard spring” breathers 
preserve their stability over much longer parameter intervals and upon bifurcations inherit their stability to new 
breathers.  The “soft spring” breathers on the other hand, very often undergo complex instability transitions, at 
which no new periodic solutions arise. We have also used the SALI method to examine the presence of ordered 
or chaotic motion more “globally” in the vicinity of a breather in its multidimensional phase space. Thus, we 
have observed that regions of regular motion around stable breathers are considerably larger and evidence of 
chaotic behavior is observed significantly further from them in the “hard spring” lattice, in comparison with 
similar results for the “soft spring” system. 
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